Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Viruses ; 15(3)2023 03 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2252521

RESUMEN

Bovine Coronavirus (BCoV) is a major pathogen associated with neonatal calf diarrhea. Standard practice dictates that to prevent BCoV diarrhea, dams should be immunized in the last stage of pregnancy to increase BCoV-specific antibody (Ab) titers in serum and colostrum. For the prevention to be effective, calves need to suck maternal colostrum within the first six to twelve hours of life before gut closure to ensure a good level of passive immunity. The high rate of maternal Ab transfer failure resulting from this process posed the need to develop alternative local passive immunity strategies to strengthen the prevention and treatment of BCoV diarrhea. Immunoglobulin Y technology represents a promising tool to address this gap. In this study, 200 laying hens were immunized with BCoV to obtain spray-dried egg powder enriched in specific IgY Abs to BCoV on a large production scale. To ensure batch-to-batch product consistency, a potency assay was statistically validated. With a sample size of 241, the BCoV-specific IgY ELISA showed a sensitivity and specificity of 97.7% and 98.2%, respectively. ELISA IgY Abs to BCoV correlated with virus-neutralizing Ab titers (Pearson correlation, R2 = 0.92, p < 0.001). Most importantly, a pilot efficacy study in newborn calves showed a significant delay and shorter duration of BCoV-associated diarrhea and shedding in IgY-treated colostrum-deprived calves. Calves were treated with milk supplemented with egg powder (final IgY Ab titer to BCoV ELISA = 512; VN = 32) for 14 days as a passive treatment before a challenge with BCoV and were compared to calves fed milk with no supplementation. This is the first study with proof of efficacy of a product based on egg powder manufactured at a scale that successfully prevents BCoV-associated neonatal calf diarrhea.


Asunto(s)
Enfermedades de los Bovinos , Coronavirus Bovino , Embarazo , Animales , Bovinos , Femenino , Pollos , Polvos , Animales Recién Nacidos , Anticuerpos Antivirales/análisis , Diarrea/prevención & control , Diarrea/veterinaria , Enfermedades de los Bovinos/prevención & control
2.
Front Microbiol ; 12: 653986, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1268262

RESUMEN

Uruguay is one of the few countries in the Americas that successfully contained the coronavirus disease 19 (COVID-19) epidemic during the first half of 2020. Nevertheless, the intensive human mobility across the dry border with Brazil is a major challenge for public health authorities. We aimed to investigate the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains detected in Uruguayan localities bordering Brazil as well as to measure the viral flux across this ∼1,100 km uninterrupted dry frontier. Using complete SARS-CoV-2 genomes from the Uruguayan-Brazilian bordering region and phylogeographic analyses, we inferred the virus dissemination frequency between Brazil and Uruguay and characterized local outbreak dynamics during the first months (May-July) of the pandemic. Phylogenetic analyses revealed multiple introductions of SARS-CoV-2 Brazilian lineages B.1.1.28 and B.1.1.33 into Uruguayan localities at the bordering region. The most probable sources of viral strains introduced to Uruguay were the Southeast Brazilian region and the state of Rio Grande do Sul. Some of the viral strains introduced in Uruguayan border localities between early May and mid-July were able to locally spread and originated the first outbreaks detected outside the metropolitan region. The viral lineages responsible for Uruguayan urban outbreaks were defined by a set of between four and 11 mutations (synonymous and non-synonymous) with respect to the ancestral B.1.1.28 and B.1.1.33 viruses that arose in Brazil, supporting the notion of a rapid genetic differentiation between SARS-CoV-2 subpopulations spreading in South America. Although Uruguayan borders have remained essentially closed to non-Uruguayan citizens, the inevitable flow of people across the dry border with Brazil allowed the repeated entry of the virus into Uruguay and the subsequent emergence of local outbreaks in Uruguayan border localities. Implementation of coordinated bi-national surveillance systems is crucial to achieve an efficient control of the SARS-CoV-2 spread across this kind of highly permeable borderland regions around the world.

3.
Virus Res ; 283: 197976, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: covidwho-46070

RESUMEN

An outbreak of atypical pneumonia caused by a novel Betacoronavirus (ßCoV), named SARS-CoV-2 has been declared a public health emergency of international concern by the World Health Organization. In order to gain insight into the emergence, evolution and adaptation of SARS-CoV-2 viruses, a comprehensive analysis of genome composition and codon usage of ßCoV circulating in China was performed. A biased nucleotide composition was found for SARS-CoV-2 genome. This bias in genomic composition is reflected in its codon and amino acid usage patterns. The overall codon usage in SARS-CoV-2 is similar among themselves and slightly biased. Most of the highly frequent codons are A- and U-ending, which strongly suggests that mutational bias is the main force shaping codon usage in this virus. Significant differences in relative synonymous codon usage frequencies among SARS-CoV-2 and human cells were found. These differences are due to codon usage preferences.


Asunto(s)
Betacoronavirus/clasificación , Betacoronavirus/genética , Uso de Codones/genética , Enfermedades Transmisibles Emergentes/virología , Regulación Viral de la Expresión Génica/genética , Genoma Viral/genética , Genómica , Aminoácidos/genética , Animales , Betacoronavirus/aislamiento & purificación , China/epidemiología , Quirópteros/virología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Evolución Molecular , Hurones/virología , Humanos , Mutagénesis/genética , Sistemas de Lectura Abierta/genética , SARS-CoV-2 , Viverridae/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA